ESTUDOS SOBRE A CORREÇÃO DA ACIDEZ DO SOLO CAUSADA PELO AL+3 TROCÁVEL: III EFEITOS SOBRE A CAPACIDADE DE FIXAÇÃO DE FÓSFORO DE TERRAS DAS SÉRIES SERTÃOZINHO E MONTE OLIMPO E DAS UNIDADES 2 E 18

G. MORENO SERVIN,
F. A. F. DE MELLO &
R. S. MORAES
Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba.

INTRODUÇÃO

"A fixação do fósfato solúvel pelo solo é um fenômeno de importante significado agrícola. Embora seja de natureza complexa e ainda não bem compreendida, numerosas teorias têm sido propostas para explicá-la".

Nos solos ácidos julgam-se que as principais causas da fixação do P sejam a formação de compostos insolúveis com Fe, Al, Ti, Mn, etc., a adsorção aos óxidos hidratados desses metais e aos minerais de argila.

Nos terrenos alcalinos, as principais causas de fixação seriam a formação de fosfatos de cálcio insolúveis, a adsorção do fosfato às partículas de carbonato de cálcio e a retenção pelas argilas" (MELLO, 1968).

Vários autores tem publicado extensas revisões bibliográficas sobre o assunto (DEAN, 1949; KURTZ, 1953; OLSEN, 1953; HEMWAL, 1957). No Brasil, diversos pesquisadores tem-se preocupado com ele (CATANI, 1947; MALAVOLTA & PELLEGRINO, 1954; CATANI & PELLEGRINO, 1957; CATANI & PELLEGRINO, 1960; CATANI & BERGAMIN FILHO, 1960; CATANI & GLORIA, 1964; BODZIAK JUNIOR et al, 1957; MELLO, 1968, 1970).

MATERIAIS E MÉTODOS

Foram utilizadas quatro terras, duas do Município de Piracicaba

(séries Sertãozinho e Monte Olimpo, segundo RANZANI et al 1966) e duas do município de Rio das Pedras (Unidades 2 e 18, de acordo com MEDEIROS, 1971 e ESCOBAR, 1969, respectivamente).

A análise granulométrica das terras revelou o seguinte: (Tabela 1).

Tabela 1 — Resultado da análise granulométrica das terras empregadas.

Terra	Argila %	Silte %	Areia %
Sertaozinho	16,36	6,57	77,07
Monte Olimpo	42,62	14,33	43,05
Unidade 2	38.78	24,72	36,50
Unidade 18	54,75	21,95	23,30

O ensaio foi conduzido da maneira exposta a seguir:

Porções de 1000 g de T.F.S.A. foram intimamente misturadas com CaCO₃ p.a. em doses crescentes, de acordo com o teor de Al permutável das mesmas, extraído com solução N em KCl. Os tratamentos foram:

Tratamento	Quantidades de cálcio aplicadas como CaCO3
Testemunha	Sem adição de CaCO3.
1	Estequiometricamente igual à quantidade de Al ^{+ 3} trocável em 1000 g de terra.
2	Estequiometricamente igual a duas vezes a quantidade de Al^{+3} em 1000 g de terra.
3	Estequiometricamente igual a três vezes a quantidade de Al + 3 tro cável existente em 1000 g de terra.
4	Estequiometricamente igual a quatro vezes a quantidade de Al+3 trocável existente em 1000 g de terra.

O tratamento 1 corresponde, para cada terra, às seguintes quantidades de CaCO₃ por 1000 g da mesma:

Quantidade de CaCO ₃	
em mg/1000 g de T.F.S.A.	
170,0	
1.410,0	
570,0	
1.340,0	

Após a mistura, as terras foram passadas para vasos e incubadas durante 45 dias, mantendo-se a umidade das mesmas a 40-50% da respectiva capacidade de campo.

Foram feitas 5 repetições de cada tratamento, ficando os vasos sobre mesa de madeira, distribuídos em blocos ao acaso, no laboratório.

Após a incubação o conteúdo de cada vaso foi seco ao ar.

O ensaio de fixação propriamente dito, foi executado da maneira exposta a seguir:

Porções de 10 ml de terra foram incubadas durante 4 dias, em frascos de Erlenmeyer de 150 ml de capacidade com 4 ml de uma solução aquosa contendo 125 ppm de P sob a forma de Ca(H₂PO₄)₂. H₂O; após esse período foram adicionados a cada frasco 150 ml de solução extratora. (Solução 0,025 N em H₂SO₄ e 0,05 N em HCl); os frascos foram agitados durante 5 minutos em agitador mecânico e deixados em repouso durante 24 horas; dos líquidos claros sobrenadantes foram retiradas alíquotas de 5 ml para determinação colorimétrica do P solúvel, usando-se molibdato de amônio e ácido ascórbico como redutor (VETTORI, 1969).

Da maneira descrita foram preparados os tratamentos testemunhas, usando-se, porém, 4 ml de água destilada em lugar da solução de Ca(H₂PO₄)₂.H₂O; a quantidade de P fixada em cada caso, foi calculada por meio da seguinte fórmula:

$$F = A + B - C$$

sendo F, a quantidade fixada de P; A, a quantidade de P da terra (Testemunha); B, a quantidade de P adicionada; C, a quantidade de P encontrada após a incubação.

RESULTADOS E DISCUSSÃO

As quantidades de P fixadas por 100 ml de cada terra, médias de 5 repetições, estão contidas na Tabela 2.

Os coeficientes das regressões fixação de P \times doses de CaCO3 estão na Tabela 3.

Tabela 2 — Quantidades de P fixadas por 100 ml de terra, em mg. Médias de 5 repetições.

Tratamento	Série ou unidade do solo				
	Sertãozinho	M.Olimpo	Unidade 2	Unidade 18	
Testemunha	2,71	5,02	5,23	3,95	
1	2,66	4,99	5.04	4,04	
2	2,48	4,92	4,97	4,02	
3	2,46	4,94	5,02	3,95	
4	2,47	4,99	4.99	3,95	

Tabela 3 — Coeficientes de regressão fixação de P \times doses de CaCO $_3$.

	Coeficiente de regressão			
Terra	Linear	Quadrática	Cúbica	4º grau
Sertãozinho	10,47	0,97	1,03	0,78
Monte Olimpo	9,82	30,93	4,36	3,74
Unidade 2	62,45	18,51	5,64	1,99
Unidade 18	0,70	2,46	2,80	0,03

Pode-se verificar (Tabela 2 e 3) que a terra da série Sertãozinho foi a que fixou as menores quantidades de P, o que está de acordo com a literatura, pois, das 4 terras estudadas é ela a mais arenosa e a que apresenta o teor mais baixo de Al ^{+ 3} trocável. O efeito das doses de CaCO3 foi linear.

Na série Monte Olimpo, é preciso que se destaque que o valor 5,02 mg/100 ml de terra é teoricamente um pouco elevado e que em todos os tratamentos as quantidades de P fixadas foram altas. Pode-se admitir que no tratamento Testemunha houve até uma pequena fixação do P solúvel da própria terra. Nos demais tratamentos a fixação foi um pouco suavizada, possivelmente devido à elevação do pH e à redução dos teores de Al ^{+ 3} trocável, conforme pode ser constatado nas Tabelas 4 e 5 *:

Tabela 4 — Valores pH das terras nos diversos tratamentos, médias de 5 repetições.

Tratamento	Série ou unidade do solo			
	Sertãozinho	M. Olimpo	Unidade 2	Unidade 18
Testemunha	5,7	4,7	4,9	5,4
1	5,9	5,5	5,6	6,2
2	6,2	7,1	6,2	6,8
3	6,4	7,8	6,6	7,4
4	6,6	7,9	7,1	7,6

Nota-se (Tabela 2) que a fixação decresceu da Testemunha ao tratamento 2, elevando-se, a seguir, nos tratamentos 3 e 4 provavelmente devido aos valores pH e aos valores de cálcio trocável mais altos (ver Tabela 6). Isso explica a significância da regressão quadrática.

A terra da unidade 2 foi a que revelou maior poder de fixação do elemento oriundo da própria amostra.

Levando-se em conta os valores F obtidos para as diversas correlações, nota-se uma tendência mais acentuada para a linearidade. A

 $^{^{*}}$ Os métodos utilizados para a determinação do pH, Al $^{+\,3}$ e Ca $^{+\,2}$ trocáveis são referidos em SERVIN, 1971.

Tabela 5 − Teores de Al + 3 trocável das terras nos diversos tratamentos, médias de 5 repetições.

Tratamento	Série ou unidade de solo			
	Sertãozinho	M. Olimpo	Unidade 2	Unidade 18
Testemunha	0,26	3,72	1,03	0,44
1	0,27	1,26	0,38	0,29
2	0,33	0,33	0,34	0,30
3	0,25	0,22	0,32	0,28
4	0,26	0,24	0,23	0,25

Tabela 6 — Teores de Ca⁺² trocável nos diversos tratamentos, médias de 5 repetições.

Tratamento	Série ou unidade do solo			
	Sertãozinho	M. Olimpo	Unidade 2	Unidade 18
Testemunha	1,49	0,87	1,62	2,59
1	1,63	3,46	2,54	4,82
2	1,89	5,62	3,33	6,66
3	2,03	7,18	3,97	7,75
4	2,31	6,95	4,06	8.36

significância desta correlação pode ser explicada pela elevação dos pHs e diminuição dos teores de Al $^{+3}$ trocável (Tabela 4 e 5). Esse argumento, contudo, não explica a significância das correlações quadrática e cúbica. E nem os teores de Ca $^{+2}$ trocável dos tratamentos 3 e 4 parecem razoáveis para explicá-la.

Finalmente, na unidade 18 nenhuma das correlações estudades foi significativa o que quer dizer que nenhum dos tratamentos teve influência sobre a capacidade de fixação de fosfato dessa terra.

RESUMO E CONCLUSÃO

No presente trabalho é apresentado um ensaio, realizado com o objetivo de verificar os efeitos da adição de doses crescentes de CaCO3 p.a. a 4 terras, sobre a capacidade de fixação de P das mesmas.

Dos resultados encontrados pode-se concluir que as adições de CaCO3 afetaram a fixação do P de modo diferente de uma terra para outra, de sorte que nenhuma conclusão definitiva pode ser formulada.

LITERATURA CITADA

BODZIAC JUNIOR, C., D. M. PAULA SOUZA & J. C. S. RISPOLI, 1967 — Fixação do fósforo em solos da região cafeeira do Estado do Paraná. Rev. Esc. Agron. e Vet., Univ. Fed. do Paraná 3:33-46.

- CATANI, R. A., 1947 Contribuição ao estudo dos fosfatos, sua dosagem, extração e distribuição nos solos do Estado de São Paulo, Tese, 65 págs.
- CATANI, R. A. & D. PELLEGRINO, 1957 A fixação do fósforo em alguns solos do Estado de São Paulo, estudada com o auxílio do fósforo radioativo P³². Rev. Agric. 32:237-252.
- CATANI, R. A. & D. PELLEGRINO, 1960 Avaliação da capacidade de fixação de fósforo pelo solo. *An. Esc. Sup. Agric. "Luiz de Queiroz"* 17:19-28.
- CATANI, R. A. & H. BERGAMIN FILHO, 1960 A fixação do fósforo pela terra roxa misturada, estudada pelo método de Neubauer e com auxílio do fósforo radioativo p³². Rev. Agric. 35:161-172.
- CATANI, R. A. & N. A. GLORIA, 1964 Evaluation of the capacity of phosphorus fixation by the soil through the isotopic exchange using P³². An. Esc. Sup. Agric. "Luiz de Queiroz" 22:229-237.
- DEAN, F., 1949 Fixation of soil phosphorus. *Adv. in Agron.* 1:391-409.
- ESCOBAR, E. H., 1969 Gênese e classificação de alguns solos da bacia do Tijuco Preto, Rio das Pedras, tese, 59 págs.
- HEMWALL, J. B., 1957 The fixation of phosphorus by soils. *Adv. in Agron.* 9:95-122.
- KURTZ, L. T., 1953 Inorganic phosphorus in acid and neutrol soils. In Soil and Fertilizers Phosphorus in Crops Nutrition, editado por W. H. Pierre e A. G. Norman, Academic Press, New York, pp. 59-88.
- MALAVOLTA, E. & D. PELLEGRINO, 1954 Nota sobre algumas transformações do superfosfato radioativo em terra roxa. *Rev. Agric.* 29:317-323.
- MEDEIROS, G. B., 1971 Gênese e classificação de alguns solos do Ribeirão das Palmeiras, Rio das Pedras, tese, 80 págs.
- MELLO, F. A. F., 1968 Capacidade de fixação de fosfato de alguns solos do Município de Piracicaba (Nota prévia). Rev. Agric. 43: 23-28.
- MELLO, F. A. F., 1970 Um método para avaliar a capacidade de fixação de fosfato pelo solo empregando o 15 p³². An. Esc. Sup. Agric. "Luiz de Queiroz" 87:347-352.
- OLSEN, S. R., 1953 Inorganic Phosphorus in Alkaline and Calcareus soils. *Em* Soil and Fertilizers Phosphorus in Crops Nutrition,

- editado por W. H. Pierre e A. G. Norman, Academic Press, New York, págs. 89-122.
- RANZANI, G., O. FREIRE & T. KINJO, 1966 Carta de solos do Município de Piracicaba. Centro de Estudos de Solos, ESALQ, 85 págs.
- SERVIN, G. M., 1971 Estudos sobre a correção da acidez causada pelo AI + 3 trocável em quatro solos e alguns efeitos dela decorrentes, tese, 47 págs.
- VETTORI, L., 1969 Método de análise de solo. Bol. Téc. nº 7 da Equipe de Pedologia e Fertilidade do solo, Ministério da Agricultura, Rio de Janeiro.