ENSAIO COM DOSES CRESCENTES DE NITROGÊNIO, FÓSFORO E POTÁSSIO NA CULTURA DO AMENDOIM (Arachis hypogaea L.) *

JOÃO NAKAGAWA, JULIO NAKAGAWA

e ANTONIO ENEDI BOARETTO

Faculdade de Ciências Médicas e Biológicas, Botucata, S. Paulo

INTRODUÇÃO

O amendoim (Arachis hypogaea L.), apesar de constituir em nosse meio uma cultura de grande importância econômica, graças ao grande e variado número de aplicações, com relação a adubação apresenta ainda resultados contraditórios e não possíveis de genetalização.

GARGANTINI & outros (1958) em ensaio fatorial NPK, utilizando solo do tipo terra-roxa-misturada notaram resposta significativa ao fósforo e nitrogênio na produção de vagens, em experimento de vaso. Já TOLEDO & MARCONDES (1961), trabalhando com solos de características semelhantes, não encontraram respostas significativas. O mesmo fato verificaram NAKAGAWA & outros (1966) em Latosol Vermelho Escuro — fase arenosa, obtendo resultado só para calagem. Entretanto ROCHA & outros (1965) chegaram a obter resposta para nitrogênio, fósforo e cálcio, em solo derivado do arenito Botucatu.

Em outros trabalhos feitos no país (SUDENE/ IPEAL, 1967; SUDENE, 1967; TELLA & outros, 1970) e também no exterior (GRE-FNWOOD, 1951; MAZZANI, 1961; ARROYO & outros 1967; ACU-NA & SANCHEZ, 1968) verificaram-se efeitos significativos para fósforo, comportamentos variáveis para o nitrogênio e quase sempre sem resposta para o potássio na produção de vagens.

^{(°) &#}x27;Trabalho apresentado na Ia. Jornada Científica da F.C.M.B.B. realizada de 10 a 15 de dezembro de 1971, em Botucatu.

O presente trabalho foi realizado com a finalidade de se estudar o efeito isolado e combinado dos elementos NPK, em doses crescentes, na cultura do amendoim, em condições de campo, da Alta Faulista, um dos maiores centros produtores desta oleaginosa, do Estado de São Paulo.

MATERIAL E MÉTODO

O delineamento experimental constou de um fatorial 33 para NPK com duas repetições, em blocos de nove unidades com confundimento de dois graus de liberdade da interação tripla N x P x K, correspondente ao grupo W de YATES (PIMENTEL GOMES, 1966).

As doses de adubo usadas foram 0,15 e 30 kg/ha de N, como sulfato de amônio; 0, 40, 80 kg/ha de P2O5, como superfosfato simples. e 0, 10 e 20 kg/ha de K2O, como cloreto de potássio. Estes foram colocados no sulco de plantio.

As parcelas tiveram cinco fileiras de 5.0 m de comprimento com espaçamento de 0,60 m, porém foram aproveitadas sòmente as três fileiras centrais, desprezando se ainda 0,5 m de cada extremida: como bordadura, tendo-se portanto área útil de 7,20 m2 por parcela. Nas fileiras as sementes foram plantadas em covas distanciadas de 0,20 m, colocando-se 2 e 3 sementes por cova. Usouse sementes da variedade Tatu-53 (vermelho) tratadas com Neantina

O ensaio foi instalado na safra "das águas" em 1970-71. no município de Herculândia, Estado de São Paulo, em solo classificado pela Comissão de Solos (1960) como pertencente ao grande grupo Podzolizado de Lins e Marília, var. Marília. Amostras compostas de solo foram retiradas antes da adubação e analisadas segundo o método de CATANI & outros (1955), tendo apresentado os dados constantes na tabela I.

Tabela I — Características químicas do solo utilizado (*)

Time	M.O.	шпы	m. e. q.	/100 g de	TFSA	
pН	0/0	н+	PO-3	ĸ+	Ca+2	Mg +-2
6,2	0,57	1,12	0.16	0,14	1,63	0,40

^(*) Análise feita na Secção Técnica "Fertilizantes e Fertilidade de Solo" do Depto. de Ciência do Solo da F.C.M.B.B.

Apl·cou-se calcário dolomítico em área toda, na dosagem de 260 kg/ha com um mês de antecedência ao plantio, visando mais o fornecimento de cálcio, um nutriente bastante exigido pela cultura (The North Caroline Agric. Ext. Service, 1955).

O "stand" obtido foi muito bom e até que se completasse o ciclo da cultura, houve necessidade de apenas duas aplicações com Dimecron. Efetuou-se a colheita aos 25 01-1971, 108 dias após o plantio, tendo-se pesado as vagens ainda úmidas.

De cada parcela, pelo método manual de divisões sucessivas, tomaram-se amostras de 100 vagens, para se determinarem os pesos das vagens, das sementes e das cascas. Foram verificados também a porcentagem de vagens normais (vagens com sementes) o número de sementes em 100 vagens, o pêso de 100 sementes e calculou-se a % de sementes em relação ao pêso de vagens.

RESULTADOS E DISCUSSÃO

St. No.

A análise de variância de pêso de vagens úmidas demonstrou que houve efeito linear negativo para nitrogênio e positivo para o fósforo, bem como, efeito da interação N X P significativo ao nivel 1% de probabilidade. Assim os níveis de fósforo na ausência de nitrogênio, se comportaram de maneira linear, sendo as doses P1 e P2 superiores à dose P0, porém aquelas não diferindo estatisticamente entre si (tabela II). Já na presença da dose N2, os níveis de fósforo foram significativos para as suas componentes linear e quadrática, tendo nêste caso também as doses P1 e P2 superado Po Mostrando em ambos os casos que foi importante a aplicação da primeira dose de fósforo pois, a segunda dose não diferiu da primeira. Quando se considerou, por outro lado os níveis de nitrogenio na ausência de fósforo, verificou-se significância das componentes linear e quadrática, sendo que N2 ocasionou um decréscimo significativo de produção em relação a N0 e N1. Na presença da dese 2 de fósforo, os níveis de N foram significativos para componente linear, havendo um decréscimo de produção quando se passou das doses de N0 para N1 e dêste para N2, porém não chegando a se significativo. O potássio e as demais interações não foram sigr.ificativas.

Tabela II — Médias do pêso de vagens com 43,9% de umidade, da interação N x P, em kg por parcela.

Médias	Kg	Médias	Kg
N0P0	3,01	P0N0	3,01
N1P0	3,21	P1N0	3,79
N2P0	2,33	P2N0	3,93
N0P1	3,79	P0N1	3.21
N1P1	3,70	P1N1	3,70
N2P1	3,59	P2N1	3,59
N0P2	3,93	P0N2	2,33
N1P2	3,59	P1N2	3,59
N2P2	3,30	P2N2	3,30

Os dados obtidos a partir de amostras de 100 frutos (vagens) de cada parcela, isto é, pêso das vagens, das sementes, das cascas, percentagens de vagens normais, número de sementes na amostra, % de sementes em relação ao pêso de vagens e pêso de 100 se mentes foram analisadas estatisticamente, sendo que as médias para os três níveis de nitrogênio, fósforo e potássio, bem como o d.m.s (TUKEY) e o C.V. de cada fator analisado encontram-se na tabela III.

Para o pêso de vagens bem como para as sementes verificou-se um efeito significativo ao nível de 1% de probabilidade para o fósfore, sendo que as suas componentes linear e quadrática foram

Tabela III — Pêso de vagens, de sementes e de casca em gramas; arc sen $\sqrt{\%}$ de vagens normais (*); número de sementes; percentagem de sementes em pêso de vagens, pêso de 100 sementes em gramas.

Médias	Pêso de vagens g (2)	Pêso de sementes g(2)	Pêso de cascas g (2)	arc sen $V^{0/0}$ Número vagens nor- de semenmais (1) (2) tes (2)	Número de semen- tes (2)	% sementes em pêso de vagens (2)	Pêso de 100 se- mentes g
N0	156,15	108,51	47,64	75,85	250.55	69,31	43,31
N	154,37	105,71	48,66	73,27	245,72	68,08	43,19
N2	157,01	109,03	47,98	74,75	241.61	69,09	45,01
P0	142,55	94,47	48,08	69,80	219,11	65,81	43,22
P1	160,06	113,39	47,57	76.49	259,11	70,38	43,81
P2	164,01	115,38	48,63	77.58	259,66	70,29	44,48
K0	158,71	110,57	48,13	75.10	249,00	69,20	44,31
K1	155,18	107,52	47,66	75,99	246,00	69,07	43,72
K2	153,64	105,16	48,48	72,72	242,88	68,21	43,48
dms 5%	10,41	8,89	3,59	4,65	19,59	2,22	1,87
C.V. %	8,02	9,91	8,98	7.51	9.56	3 86	5 16

^(*) Vagens com sementes.

^(**) Em amostra de 100 frutos por parcela.

também significativas. Desta forma as doses P1 e P2 foram superioles a P0. O nitrogênio e o potássio, bem como as interações não chegaram a ser significativas. Já o pêso da casca não sofreu influência significativa de nenhum dos elementos estudados.

Considerando-se a % de vagens normais, isto é, aquelas que apresentavam sementes, a análise de variância do arcoseno da $\sqrt[3]{o_{/0}}$ demonstrou um efeito significativo ao nível de 1% de probabilidade para fósforo, cujo efeito foi linear. Assim as doses P1 e P2 deram origem a maior percentagem de vagens normais que P0, vindo concordar com o trabalho de MAZZANI, 1961, que ressalta a importância do fósforo na % de vagens normais. Os demais elementos, nitrogênio e potássio, e as interações não foram significativos.

A análise de variância do número de sementes encontradas na au ostra de 100 vagens mostrou efeito significativo ao nível de 1% de probabilidade para o fósforo, sendo as suas componentes linear e quadrático também significativas. O número de sementes para as doses P1 e P2 foi superior ao da dose P0, porém aquelas não diferindo entre si, estatisticamente. Não se verificou efeito do nitrogênio e potássio, bem como das interações.

Como era de se esperar a % de sementes em pêso de vagens, foi também positiva para o fósforo de maneira linear e quadrática, visto que assim se comportaram o pêso de vagens e de sementes. Aqui também não se verificou a ação dos demais elementos em estudo, bem como das interações.

O nitrogênio influiu no pêso de 100 sementes, significativamente ao nível de 5% de probabilidade, assim como o seu componente linear. A dose N2 foi superior a N0 e N1. Neste caso o fósforo e potássio não influíram.

CONCLUSÕES

Foram verificados efeitos do nitrogênio, do fósforo e da interação N x P na produção de vagens, sendo o efeito do nitrogênio negativo na ausência de fósforo e o efeito de fósforo positivo na ausência de nitrogênio e na presença da dose N2. O nitrogênio apesar de ter aumentado o pêso de 163 sementes não chegou a alterar significativamente o pêso total das mesmas.

O fósforo influiu na formação de maior numero de sementes nas vagens, aumentou a porcentagem de sementes em pêso de vagens. formou porcentualmente maior número de vagens normais, contribuiu positivamente no pêso de sementes em 100 frutos e tornou significativamente as vagens mais pesadas. Afetando tais fatores, o fósforo incrementou significativamente a produção.

Nas circunstâncias do presente trabalho, o potássio não ocasionou alterações significativas nos aspectos botânicos, aqui estudados.

SUMMARY

To study the isolated and combined effects of NPK on peanut (Arachis hypogaea L.) yield, a factorial experiment 3 x 3 x 3 was carried out, in a Podzolized soil of Lins and Marilia, var. Marilia, in Herculandia, São Paulo State, 1970-71. The doses were 0, 15 and 30 kg/ha of N; 0, 40 and 80 of P2O5 and 0, 10 and 20 kg/ha of K2O, as amonium sulphate, simple superphosphate and potash chloride, respectively.

Effects of N and P, and of the interaction $N \times P$ were observed on the yied of pods. Negative effect of N was observed in the absence of P. Positive effect of P was observed in the absence of N and in the presence of N2 dose.

P included production of normal pods, increased the number of seeds and the total weight of seeds consequently increasing the weight of 100 pods. Since shell weight did not increase, a positive effect of P on the yield of pods was verified.

N incresed the weight of 100 seeds but did not increase the Total weight of seeds.

K did not show any effect on the factors studied.

AGRADECIMENTOS

Os autores agradecem a Prefeitura Municipal de Herculândia na pessoa do Sr. Francisco Simões, dignísimo Prefeito Municipal, pela colaboração prestada na realização dêste trabalho.

LITERATURA CITADA

ACIJNA, E. J. & D. C. SANCHEZ, 1969 — Resposta do amendoim à aplicação do nitrogênio, fósforo e potássio em solo franco-arenoso de savana no Estado de Monaga. Fertilité (35): 3-9.

ARROYO, J., J. ALLIEVI & B. MAZZANI, 1967 — Ensayo de fertilización en mani realizado en la Sabana de Londres, Estado

- Lara. Agronomia Tropical 17 (2): 101-111.
- CATANI, R. A., J. R. GALLO & H. GARGANTINI, 1955 Amostragem de solos, métodos de análise. interpretação e indicações gerais para fins de fertilidade. Instituto Agronômico de Campinas, Boletim n. 69.
- COMISSÃO DE SOLOS, 1960 Levantamento de reconhecimento dos solos do Estado de São Paulo. Ministério da Agricultura. Serv. Nac. de Pesq. Agron. Rio de Janeiro, Boletim n. 12.
- GARGANTINI, H., R. TELLA & A. CONAGIN, 1958 Ensaio de adubação N-P-K em amendoim. Bragantia 17 (1): 1-12.
- GREENWOOD, M., 1951 Fertilizer trials with groundnuts in Northern Nigeria. Emp. J. exp. Agr. 19: 225-41.
- MAZZANI, B., 1961 El mani en Venezuela, MAC. Centro de Investigaciones Agronomicas. Maracay (Monografia n. 1).
- NAKAGAWA, J., L. C. SCOTON, T. C. ALMEIDA & A. M. LOUIS NEPTUNE, — 1966 — Adubação NPK, calagem e diagnose foliar do amendoim. Anais da E.S.A. "Luiz de Queiroz" 23: 305-377.
- PIMENTEL GOMES, F., 1966 Curso de Estatística Experimental.

 3a Edição, Escola Superior de Agricultura "Luiz de Queiroz"
 Piracicaba, 404 pág. + 15 tabelas.
- ROCHA, J. L., R. TELLA, V. CANECCHIO FILHO & E. S. FREIRE. 1965 — Experiências de adubação do amendoim em campos da região de Botucatu. **Bragantia** 24 (23): 281-305.
- SUDENE/IPEAL, 1967 Contribuição ao estudo de plantas alimentares. Estado da Bahia; convênio SUDENE-IPEAL Recife, SUDENE Div. Documentação, 216 pág.
- SUDENE, 1967 Experimento de amedoim em tabuleiros. Recife Div. Documentação, 48 pág.
- TELLA. R.. V. CANECCHIO FILHO, J. L. V. ROCHA, E. S. FREI-RE & T. IGUE. 1970 — Efeitos de doses crescentes de nitrogênio, fósforo e potássio sôbre a produção de amendoim em solos podzolizados de Lins e Marilia. Bragantia 29 (19): 199-205.
- TOLEDO, F. F. & A. L. MARCONDES, 1961 Amendoim: ensaio de adubação N-P-K. Boletim Agric. (Minas Gerais), 10 (3-12): 71-75.
- THE NORTH CAROLINE AGRICULTURAL EXTENSION SERVICE.

 Peanut Production guide, for North Caroline Farmers. Extension Circular n. 257, 23 pág.