CAPACIDADE DE FIXAÇÃO DE FOSFATO DE ALGUNS SOLOS DO MUNICÍPIO DE PIRACICABA (NOTA PRÉVIA)

FRANCISCO DE ASSIS FERRAZ DE MELLO

E.cola Superior de Agricultura "Luiz de Queiroz" Universidade de S. Paulo — Piracicaba

INTRODUÇÃO

A tixação do fosfato solúvel pelo solo é um fenômeno de importante significado agrícola. Embora seja de natureza complexa e ainda não bem compreendida, numerosas teorias têm sido propostas para explicá-la.

Nos solos ácidos julgam-se que as principais causas da fixação do P sejam a formação de compostos insolúveis com Fe, Al, Ti. Mn, etc., a adsorção aos óxidos hidratados dêsses metais e aos minerais de argila.

Nos terrenos alcalinos as principais causas da fixação seriam a formação de fosfatos de cálcio insolúveis, a adsorção do fosfato às partículas de carbonato de cálcio e a retenção pelas argilas.

Em qualquer caso, a fixação biológica pode atingir, às vêzes, certa magnitude.

Tanta atenção tem merecido tal fenômeno que alguns autores (LEAN, 1949; KURTZ, 1953; OLSEN, 1953; HEMWALL, 1957) apresentaram extensas revisões bibliográficas a respeito. Entre nós também o assunto tem merecido consideração (CATANI, 1947; MALAVOLTA & PELLEGRINO, 1954; CATANI & PELLEGRINO, 1957; CATANI & PELLEGRINO, 1960; CATANI & BERGAMIN FILHO, 1960; CATANI & GLORIA, 1964).

Acredita-se que, para as condições gerais dos solos do Estado de São Paulo a principal causa da fixação do fosfato é a adsorção à superfície das partículas coloidais de óxidos hidratados de ferro, alumínio e outros.

Diversos dados experimentais parecem indicar que a fixação do ion fosfato não constitui necessàriamente perda de disponibilidade às plantas (CATANI, 1947; MENDES, 1950). Constituiria, então, um importante mecanismo de proteção do fesforo contra as perdas através das águas de percolação.

Os processos empregados no estudo da fixação do fosfato inclusive o referido nêste trabalho, são convencionais, mas dão uma ideia relativa da magnitude do fenómeno entre os diversos solos.

MATERIAIS E MÉTODOS

Os solos (T.F.S.A., camada superficial de 0-20cm) empregados e suas características químicas se encontram indicados no quadro I.

	of our sound sol solimins solimins	4 000	our family	400000	Caro	T OCTATIO
١	0,25	0,18	0,15	2,73	4,9	Série Ribeirão Claro
	0,05	0,30	0,14	2,27	5,2	Série Iracema
	0,30	0,18	0,14	1,81	6,2	Série Bairrinho
	0,21	0,07	0,15	2,22	5,4	Série Cruz Alta
2,80 0,88	0,23	0,31	0,14	2,58	6,5	Série Pau D'Alho
	0,11	0,26	0,17	3,51	5,6	
	0,16	60'0	0,13	1,91	6,2	٠.
	0,19	80,0	0,11	1,70	6,2	
3,12 0,88	0,23	80,0	0,15	2,58	5,9	Série Serrote
5,52 0,72	0,49	0,40	0,17	3,72	6,4	Série Sertãozinho
3,92 1,00	0,23	0,13	0,17	2,79	6,2	Série Ibitiruna
$c_{a}+2 M_{B}+2$	K+	por 100g terra	N_0	org. %	$_{ m Hd}$	
e.mgP043 e.mg trocável/100 terra	e.mg troca	$-mgP04^3$		Mat.		

As características físicas e morfológicas foram descritas por RANZANI et al. (1966).

A marcha da determinação foi adaptada de CATANI et al. (1963) e, em resumo, foi a descrita abaixo.

Porções de 4g de terra foram passadas para frascos de Erlenmeyer de 250ml. Adicionaram-se a cada vaso 100ml de solução aquosa 0,001 N em PO—34 proveniente do KH2PO4. Os vasos foram a seguir arrolhados, agitados durante 15 minutos em agitador horizontal e os extratos filtrados.

Retuaram-se aliquotas de 2ml dos extratos e da solução 0.001 N em PO—34 que não havia entrado em contacto com o solo e colocaram-se em balões volumétricos de 50ml. A cada balão foram adicionados 1,5ml de solução de H2SO4 5N, 2,5ml do reativo sulfo-molíbdico e 0.5ml de solução de cloreto estanhoso a 2%, homogeneizando-se após a adição de cada reativo. Completou-se o volume, agitou-se e após 10 minutos procedeu-se à leitura em colorímetro Klett-Summerson empregando filtro de $660\,\mathrm{m}\,\mu$.

Os resultados foram determinados com o auxílio de uma reta de padrões preparada do seguinte modo:

Dissolveram-se 2,2682g de KH2PO4 em água, adicionaram-se 3ml de H2SO4 e completou-se o volume a 500ml. Passou-se uma afiquota de 5ml dessa solução para balão de 500ml, juntaram-se aproximadamente 400ml de água destilada, 3ml de H2SO4 e completou-se o volume. Um ml dessa solução contem 1 equivalente micrograma de PO-34.

Transferiram-se 0,25; 0,5; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0ml da solução acima preparada para balões de 50ml; adicionaram-se de 30 a 40ml de água destilada, 1,5ml de H2SO4 5N, seguindo-se daí por diante, a marcha analítica descrita acima.

Foi empregada a seguinte fórmula para o cálculo dos resultados:

Fixação
$$\%$$
 de P $=$ 100 $\frac{100 \, \mathrm{L2}}{\mathrm{L1}}$

sendo

L1 = resultado lido na curva padrão em e. μ g de fosfato da prova em branco.

L2 — resultado lido na curva padrão em e. "g de fosfato da solução que foi agitada com o solo.

Os reativos foram preparados da maneira indicada por CATANI et al. (1963):

Solução de ácido sulfúrico 5N — Em balão de 1 litro contendo aproximadamente 700ml de água destilada, foram adi-

cionados lentamente 141ml de H2SO4 resfriando-se em água corrente. Completou-se o volume.

Sclução de molibdato de amônio a 10% — Colocaram-se cêrca de 500ml de água destilada em copo de 1.000ml, aqueceu se a 80-90°C e, com agitação constante, dissolveram-se 100g de (NH4)6 Mo7O24. 4H2O. Esfriou-se e completou-se o volume.

Solução de molibdato de amênio em acido sulfúrico — Passaram-se para frasco de Erlenmeyer de 500ml, 240ml de água destriada e lentamente foram adicionados 80ml de H2SO4 resfriando-se constantemente. Depois de frio se acrescentaram 80ml da solução de molibdato de amênio a 10%.

Solução de cloreto estanhoso — 0.5g de SnCl2.2H2O foi passado para copo de 50ml, juntando-se, a seguir, 1.2ml de HC1 e aquecendo-se em banho maria. Depois de dissolvido o cloreto estanhoso, transferiu-se a solução para um balão de 25ml e completou-se o volume com solução de HC1 (1+9).

RESULTADOS

Os resultados obtidos são dados no quadro II.

Terra	Fixação percen- tual de P	Limo º/o *	Argila º/o 🔭	Limo º/o + Argila º/o	
Série Ibitiruna	0,88	4,7	5,5	10,2	
Série Sertãozinho	2,63	1,2	15,6	16,8	
Série Serrote	4,38	37 - 111111/	-		
Série Tanguinho	20,01			-	
Série Luiz de Queiroz	24,39	27,5	38,4	65,9	
Série Godinhos	25,27	51,6	22,5	74,1	
Série Pau D'Alho	26,95	45,0	25,9	70,3	
Série Cruz Alta	33,96	5,1	5,5	10,6	
Série Bairrinho	42,65	48,2	24,7	72,9	
Série Iracema	46,09	26,1	46,1	72,2	
Série Ribeirão Claro	53,91	5,0	5,4	10,4	

^{*} Segundo RANZANI et. al. (1966).

QUADRO II — Capacidade de fixação de fosfato dos solos estudados

De um modo geral, como era de se esperar, houve uma certa relação entre os teores de limo e de argila e as capacidades

de fixação de fosfato correspondentes, exceto nos casos dos solos das séries Cruz Alta e Ribeirão Claro.

RESUMO

Na presente nota prévia, o autor apresenta os resultados referentes à capacidade de fixação de fosfato de alguns solos do município de Piracicaba.

Com exceção de dois casos, houve uma relação, já esperada, entre a capacidade de fixação de fosfato das terras e os seus respectivos teores de limo e de argila.

LITERATURA CITADA

- CATANI, R. A., 1947 Contribuição ao estudo dos fosfatos, sua dosogem, extração e distribuição nos solos do Est. de S. Paulo. Tese de Doutoramento, 65 págs. mimeo.
- CATANI, R. A. & D. PELLEGRINO, 1957 A fixação do fósforo cm alguns solos do Est. de S Paulo, estudada com o auxilio do fósforo radioativo P32. Rev. de Agricultura 32. 237-252.
- CATANI, R. A. & D. PELLEGRINO, 1960 Avaliação da capapacidade de fixação de fósforo pelo solo. Anais da E. S. A "Luíz de Queiroz" 17: 19-28.
- CATANI, R. A. & H. BERGAMIN FILHO, 1960 A fixação do fósforo pela terra roxa misturada, estudada pelo metodo de Neubauer e com o auxílio do fósforo radioativo P32. Rev. de Agricultura 35: 161-172.
- CATANI, R. A., J. T. PEREZ, N. A. DA GLÓRIA & H. BERGA-MIN FILHO, 1963 O uso de radioisótopos no estudo da química e da fertilidade do solo. Aula ministrada no Curso Latinoamericano de Energia Nuclear Aplicada à Agricultura, ESALQ, Piracicaba.
- CATANI, R. A. & N. A. DA GLÓRIA, 1964 Evaluation of the capacty of phosphorus fixation by the soil through the isotopic exchange, using P32. Anais da ESALQ 22: 229-237.

- DEAN, L. A., 1949 Fixation of soil phosphorus. Em Advances in Agronomy, vol. I, pág. 391-409, editado por A. G. Norman. Academic Press Inc., New York.
- HEMWAIL, J. B., 1957 The fixation of phosphorus by soils. Em Advances in Agronomy. vol. IX, pág. 95-112, editado por A. G. Norman, Academic Press Inc., New York.
- KURTZ, L. T., 1953 Inorganic phosphorus in acid and neutral soils. Em Soil and Fertilizer Phosphorus in Crop Nutrion, pág. 59-88, editado por W. H. Pierce & A. G. Norman, Academic Press Inc. New York.
- MALAVCLTA, E. & D. PELLEGRINO, 1954 Nota sôbre algumas transformações do superfosfato radioaltivo em terra roxa. Rev. de Agric. 29: 317-323.
- MENDES, CARLOS TEIXEIRA, 1950 Adubações fosfatadas. Rev. de Agric. 25: 1-22.
- CLSEN, S. R., 1953 Inorganic phosphorus in alkaline and calcareous soils. Em Soil and Fertilizer Phosphorus in Crop Nutrition, editado por W. H. Pierce & A. G. Norman, pág. 89-122, Academic Press Inc. New York.
- RANZANI, G., O. FREIRE & T. KINJO, 1966 Carta de solos de muncípio de Piracicaba, Centro de Estudos de solos. E.S.A.L.Q., Piracicaba.

IN MEMORIAM

- making protest introduction may a suscitude at

Prof. Carlos T. Mendes

Prof. N. Athanassof

Ex-diretores da REVISTA DE AGRICULTURA